783 research outputs found

    Learning task-optimal image registration with applications in localizing structure and function in the cerebral cortex

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 127-141).In medical image analysis, registration is necessary to establish spatial correspondences across two or more images. Registration is rarely the end-goal, but instead, the results of image registration are used in other tasks, such as voxel-based morphometry, functional group analysis, image segmentation and tracking. In this thesis, we argue that the quality of image registration should be evaluated in the context of the application. Consequently, we develop a framework for learning registration cost functions optimized for specific tasks. We demonstrate that by taking into account the application, we not only achieve better registration, but also potentially resolve certain ambiguities and ill-posed nature of image registration. We first develop a generative model for joint registration and segmentation of images. By jointly modeling registration and the application of image segmentation, we demonstrate improvements in parcellation of the cerebral cortex into different structural units. In this thesis, we work with spherical representations of the human cerebral cortex. Consequently, we develop a fast algorithm for registering spherical images. Application to the cortex shows that our algorithm achieves state-of-the-art accuracy, while being an order of magnitude faster than competing diffeomorphic, landmark-free algorithms. Finally, we consider the problem of automatically determining the "free" parameters of registration cost functions.(cont.) Registration is usually formulated as an optimization problem with multiple tunable parameters that are manually set. By introducing a second layer of optimization over and above the usual registration, this thesis provides the first effective approach to optimizing thousands of registration parameters to improve alignment of a new image as measured by an application-specific performance measure. Much previous work has been devoted to developing generic registration algorithms, which are then specialized to particular imaging modalities (e.g., MR), particular imaging targets (e.g., cardiac) and particular post- registration analyses (e.g., segmentation). Our framework provides a principled method for adapting generic algorithms to specific applications. For example, we estimate the optimal weights or cortical folding template of the generic weighted Sum of Squared Differences dissimilarity measure for localizing underlying cytoarchitecture and functional regions of the cerebral cortex. The generality of the framework suggests potential applications to other problems in science and engineering formulated as optimization problems.by B.T. Thomas Yeo.Ph.D

    Supervised Nonparametric Image Parcellation

    Get PDF
    Author Manuscript 2010 August 25. 12th International Conference, London, UK, September 20-24, 2009, Proceedings, Part IISegmentation of medical images is commonly formulated as a supervised learning problem, where manually labeled training data are summarized using a parametric atlas. Summarizing the data alleviates the computational burden at the expense of possibly losing valuable information on inter-subject variability. This paper presents a novel framework for Supervised Nonparametric Image Parcellation (SNIP). SNIP models the intensity and label images as samples of a joint distribution estimated from the training data in a non-parametric fashion. By capitalizing on recently developed fast and robust pairwise image alignment tools, SNIP employs the entire training data to segment a new image via Expectation Maximization. The use of multiple registrations increases robustness to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with manual labels for the white matter, cortex and subcortical structures. SNIP yields better segmentation than state-of-the-art algorithms in multiple regions of interest.NAMIC (NIHNIBIBNAMICU54-EB005149)NAC (NIHNCRRNACP41-RR13218)mBIRN (NIHNCRRmBIRNU24-RR021382)NIH NINDS (Grant R01-NS051826)National Science Foundation (U.S.) (CAREER Grant 0642971)NCRR (P41-RR14075)NCRR (R01 RR16594-01A1)NIBIB (R01 EB001550)NIBIB (R01EB006758)NINDS (R01 NS052585-01)Mind Research InstituteEllison Medical FoundationSingapore. Agency for Science, Technology and Researc

    Cortical Folding Patterns and Predicting Cytoarchitecture

    Get PDF
    The human cerebral cortex is made up of a mosaic of structural areas, frequently referred to as Brodmann areas (BAs). Despite the widespread use of cortical folding patterns to perform ad hoc estimations of the locations of the BAs, little is understood regarding 1) how variable the position of a given BA is with respect to the folds, 2) whether the location of some BAs is more variable than others, and 3) whether the variability is related to the level of a BA in a putative cortical hierarchy. We use whole-brain histology of 10 postmortem human brains and surface-based analysis to test how well the folds predict the locations of the BAs. We show that higher order cortical areas exhibit more variability than primary and secondary areas and that the folds are much better predictors of the BAs than had been previously thought. These results further highlight the significance of cortical folding patterns and suggest a common mechanism for the development of the folds and the cytoarchitectonic fields.National Center for Research Resources (U.S.) (P41-RR14075)National Center for Research Resources (U.S.) (R01-RR16594-01A1)National Center for Research Resources (U.S.) (NCRR BIRN Morphometric Project BIRN002, U24 RR021382)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 EB001550)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01 EB006758)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NS052585-01)Mental Illness and Neuroscience Discovery (MIND) InstituteNational Institutes of Health (U.S.) (NIH Roadmap for Medical Research (grant U54 EB005149))Hermann von Helmholtz-Gemeinschaft Deutscher ForschungszentrenDeutsche Forschungsgemeinschaft (DFG)National Institutes of Health. National Institute for Biomedical Imaging and BioengineeringNational Institute of Neurological Disorders and Stroke (U.S.)National Institute of Mental Health (U.S.

    Intrinsic Functional Connectivity of the Brain in Adults with a Single Cerebral Hemisphere

    Get PDF
    A reliable set of functional brain networks is found in healthy people and thought to underlie our cognition, emotion, and behavior. Here, we investigated these networks by quantifying intrinsic functional connectivity in six individuals who had undergone surgical removal of one hemisphere. Hemispherectomy subjects and healthy controls were scanned with identical parameters on the same scanner and compared to a large normative sample (n = 1,482). Surprisingly, hemispherectomy subjects and controls all showed strong and equivalent intrahemispheric connectivity between brain regions typically assigned to the same functional network. Connectivity between parts of different networks, however, was markedly increased for almost all hemispherectomy participants and across all networks. These results support the hypothesis of a shared set of functional networks that underlie cognition and suggest that between-network interactions may characterize functional reorganization in hemispherectomy

    Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer’s disease

    Get PDF
    We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer’s disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid–positive (Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aβ+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.United States. National Institutes of Health (1K25EB013649-01)United States. National Institutes of Health (1R21AG050122-01A1)United States. National Institutes of Health (P01AG036694)United States. National Institutes of Health (F32AG044054

    Supervised Nonparametric Image Parcellation

    Get PDF
    Abstract. Segmentation of medical images is commonly formulated as a supervised learning problem, where manually labeled training data are summarized using a parametric atlas. Summarizing the data alleviates the computational burden at the expense of possibly losing valuable information on inter-subject variability. This paper presents a novel framework for Supervised Nonparametric Image Parcellation (SNIP). SNIP models the intensity and label images as samples of a joint distribution estimated from the training data in a non-parametric fashion. By capitalizing on recently developed fast and robust pairwise image alignment tools, SNIP employs the entire training data to segment a new image via Expectation Maximization. The use of multiple registrations increases robustness to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with manual labels for the white matter, cortex and subcortical structures. SNIP yields better segmentation than state-of-the-art algorithms in multiple regions of interest

    A Connectivity-Based Psychometric Prediction Framework for Brain-Behavior Relationship Studies.

    Full text link
    peer reviewedThe recent availability of population-based studies with neuroimaging and behavioral measurements opens promising perspectives to investigate the relationships between interindividual variability in brain regions' connectivity and behavioral phenotypes. However, the multivariate nature of connectivity-based prediction model severely limits the insight into brain-behavior patterns for neuroscience. To address this issue, we propose a connectivity-based psychometric prediction framework based on individual regions' connectivity profiles. We first illustrate two main applications: 1) single brain region's predictive power for a range of psychometric variables and 2) single psychometric variable's predictive power variation across brain region. We compare the patterns of brain-behavior provided by these approaches to the brain-behavior relationships from activation approaches. Then, capitalizing on the increased transparency of our approach, we demonstrate how the influence of various data processing and analyses can directly influence the patterns of brain-behavior relationships, as well as the unique insight into brain-behavior relationships offered by this approach

    Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study

    Get PDF
    How individual differences in brain network organization track behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, most studies focus on single behavioral traits, thus not capturing broader relationships across behaviors. In a large sample of 1858 typically developing children from the Adolescent Brain Cognitive Development (ABCD) study, we show that predictive network features are distinct across the domains of cognitive performance, personality scores and mental health assessments. On the other hand, traits within each behavioral domain are predicted by similar network features. Predictive network features and models generalize to other behavioral measures within the same behavioral domain. Although tasks are known to modulate the functional connectome, predictive network features are similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood
    corecore